
Programming Assignment I
Computer Networks

Zheng Cao

Sriramkumar Balasubramanian

Li Yan

Introduction

• We prefer Java (Download Eclipse)

• Easy for socket programming and multi-
threading

• Can use C as well

• Download from wiki website

▫ The zip file containing code

▫ Assignment manual

Overview

• Design a system with a game server and clients

• Each entity listen’s on it’s own port (unique)

• UDP protocol from client to server and back

• Practical aspect: Client-server programs are
going to be run on the same machine, so
“127.0.0.1” – standard IP (for part 1)

Structure

• 1 game server

• ≤ 5 players

In one local host

machine

The Game

• Tic-tac-toe

• Fairly standard game

http://en.wikipedia.org/wiki/Tic-tac-toe

http://en.wikipedia.org/wiki/Tic-tac-toe
http://en.wikipedia.org/wiki/Tic-tac-toe
http://en.wikipedia.org/wiki/Tic-tac-toe
http://en.wikipedia.org/wiki/Tic-tac-toe
http://en.wikipedia.org/wiki/Tic-tac-toe

The server

• Clients register with the server

• The server maintains a list of clients with three
states(busy, free, decision)

• The server also handles the game logic for each
game, choosing a player/playing a valid cell
/finishing game

The client(s)

• The client basically logs in to the server

• Chooses an opponent from player list

• Establish connection and play the game

• Continue when finishing game or logout

Part 1

• Clients- server communication

• Just combine the previous definitions into a
system

• The format for packets will be provided

Part 2

• Communication over an unreliable channel

• We provide a channel “jar” file, arguments
<port-number>

• It ensures that packets are lost at a high
frequency

• Note: introduce “acknowledgement” packets

• The format of the packet will be provided with
the assignment document

Part 3

• The server can accept only 5 clients from the
same IP

• Ensure that the server blocks the 6th client from
the same IP trying to access it

• So we provide a proxy server

• Use the proxy to bypass the restriction

Introduction to Threads

▫ Threads and processes

▫ Running in parallel

▫ Practical aspect:

▫ Client and server are processes

▫ Each process contains one or more threads for the
tasks

▫ Context of threads - Java

What is a thread?

• A single sequential execution path in a program

• Concentrates on a particular subtask

• Efficient usage of CPU time

• Different from a process

Lifecycle of a thread - Java

New thread Blocked Ready to Run

Running Dead

suspend()

wait()

sleep()

other

run()exits
stop()

start()

resume()

notifyAll()

sleep finishes

Creating a Thread

public class myThread implements Runnable {

…….

public void run(){

….

 }

}

public class myThread extends Thread {

…….

public void run(){

….

 }

}

myThread t1 = new myThread();

Thread t = new Thread(t1);

t.start();

myThread t = new myThread();

t.start();

Thread API definition

• http://docs.oracle.com/javase/6/docs/api/java/
lang/Thread.html

• More about the thread class

• Note: ensure there are no issues when threads
access a common resource

• http://en.wikipedia.org/wiki/Semaphore_%28p
rogramming%29

• Examples will be provided with the assignment

http://docs.oracle.com/javase/6/docs/api/java/lang/Thread.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Thread.html
http://en.wikipedia.org/wiki/Semaphore_(programming)
http://en.wikipedia.org/wiki/Semaphore_(programming)

Socket Programming
Java

Two Types

• TCP

▫ Set up connection

▫ Send data through the connection

• UDP

▫ No connection needed

▫ Send UDP packets

TCP Programming Steps

TCP Receiver

• Create ServerSocket

• Bind listening port

• Create Socket

• Accept connection

• Receive

• Close connection

TCP Sender

• Create Socket

• Connect to the receiver

• Send

• Close

Related Class & Method

• ServerSocket

▫ accept()

• Socket

▫ getInputStream()

▫ getInetAddress()

▫ getPort()

UDP Programming Steps

UDP Receiver

• Create DatagramSocket

• Bind receiving port

• Receive DatagramPacket

UDP Sender

• Create DatagramSocket

• Create DatagramPacket

• Send DatagramPacket

Related Class & Method

• DatagramSocket

▫ send()

▫ receive()

• DatagramPacket

▫ getAddress()

▫ getPort()

Tools

• Eclipse
▫ Helpful in development
▫ http://www.eclipse.org/

• Terminal

▫ Compile source code
▫ Run program
▫ Submit

• Link:
▫ http://docs.oracle.com/javase/tutorial/networking/so

ckets/index.html

http://www.eclipse.org/
http://www.eclipse.org/
http://docs.oracle.com/javase/tutorial/networking/sockets/index.html
http://docs.oracle.com/javase/tutorial/networking/sockets/index.html
http://docs.oracle.com/javase/tutorial/networking/sockets/index.html
http://docs.oracle.com/javase/tutorial/networking/sockets/index.html

